

# Standardisation de l'utilisation des données du SNDS à des fins de recherche médicale : présentation d'un modèle de données optimisé centré sur le patient

N.Thurin<sup>1</sup>, R. Lassalle<sup>1</sup>, J. Jové<sup>1</sup>, R. Sylvestre<sup>1</sup>, J. Dupont<sup>1</sup>, C. Lacueille<sup>1</sup>, P. Blin<sup>1</sup>, N. Moore<sup>1</sup>, C. Droz-Perroteau<sup>1</sup>

<sup>1</sup> Bordeaux PharmacoEpi, INSERM CIC1401, Université de Bordeaux, Bordeaux, France

#### Introduction

- > Le SNDS est un outil puissant et incontournable en pharmaco-épidémiologie permettant
  - Une analyse d'impact (bénéfices/risques) des médicaments en conditions réelles,
  - L'évaluation de parcours de soin des patients,
  - Le suivi de l'évolution des maladies et des traitements.

> Le SNDS a une architecture centrée sur la prestation (DCIR) et le séjour (PMSI, Figures 1 et 2)

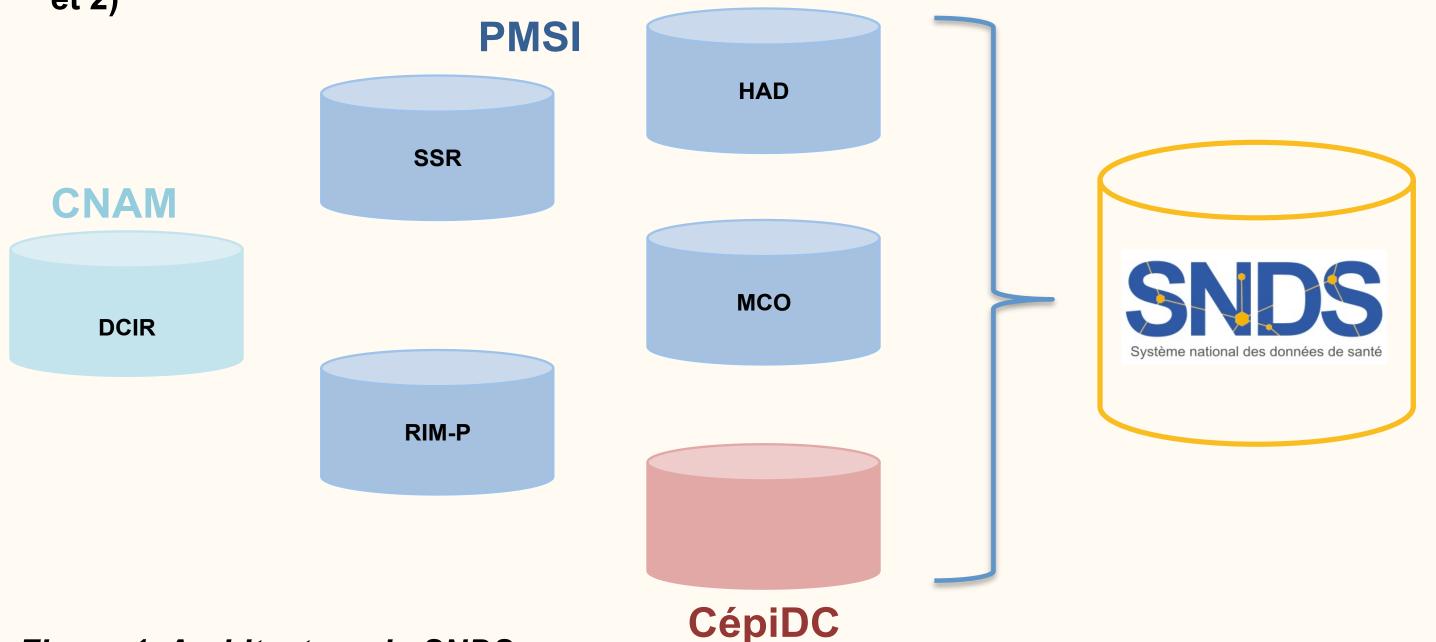



Figure 1. Architecture du SNDS

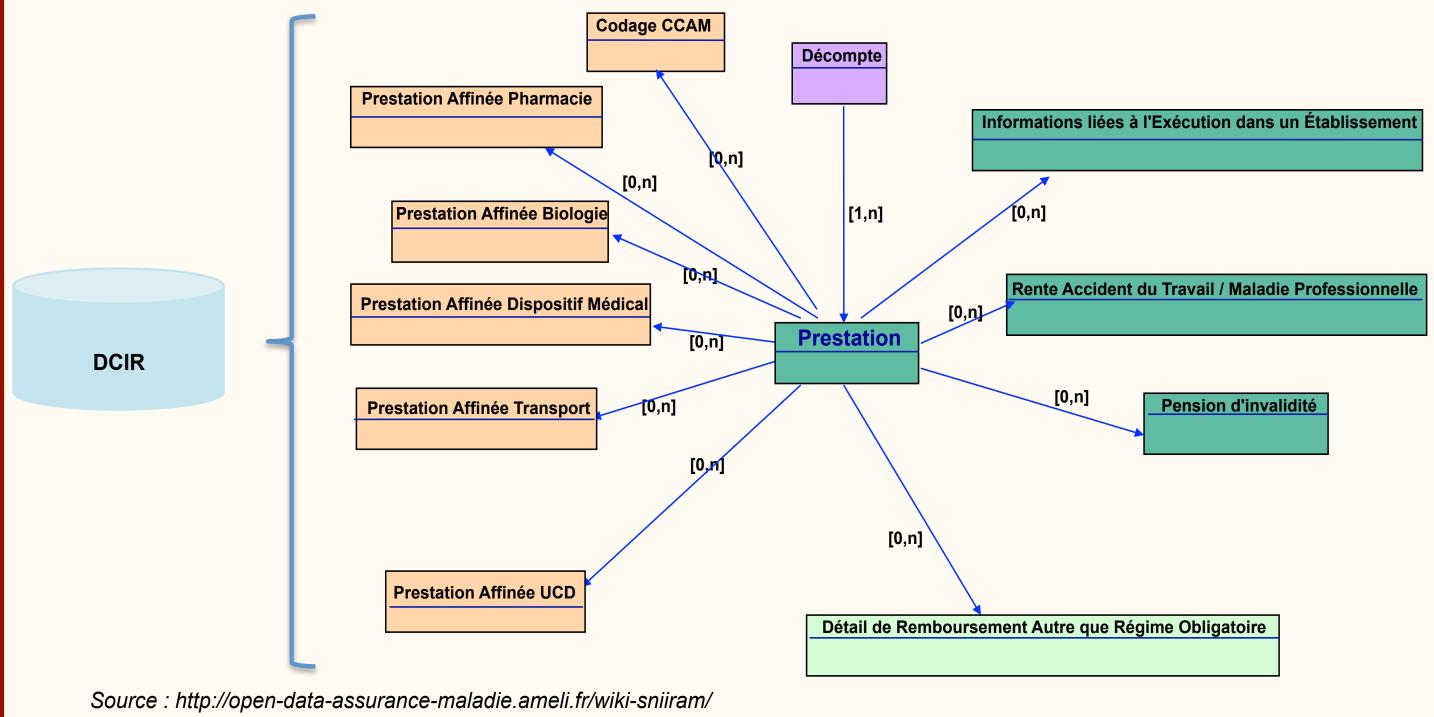



Figure 2. Architecture du DCIR centrée sur la prestation

- > L'architecture du SNDS a pour conséquence de rendre complexe son usage à des fins de recherche (Tableau 1)
  - L'unité statistique est la prestation ou le séjour plutôt que le patient,
  - Le nombre de tables annuelles et de variables est très important et croissant,
  - Cela entraine une certaine « lourdeur » dans les traitements : nombre élevé de clés de jointure, grand volume de données et tables à manipuler, temps machine important.

| Univers             | Nombre de tables/an <sup>1</sup> |     | Nombre de variables/an <sup>1</sup> |      |
|---------------------|----------------------------------|-----|-------------------------------------|------|
|                     | Min                              | Max | Min                                 | Max  |
| DCIR                | 12                               | 13  | 375                                 | 394  |
| MCO                 | 19                               | 54  | 342                                 | 859  |
| SSR                 | 14                               | 27  | 260                                 | 519  |
| RIM-P               | 6                                | 16  | 92                                  | 361  |
| HAD                 | 6                                | 22  | 114                                 | 437  |
| CépiDC <sup>2</sup> | _                                | 2   | -                                   | 61   |
| Total               | 57                               | 134 | 1183                                | 2631 |

<sup>1</sup> 2006 - 2016 <sup>2</sup> 2013 - 2015

Tableau 1. Volume annuel de tables et variables au sein du SNDS

## **Objectifs**

Construire, à partir des données du SNDS, un modèle simplifié et optimisé pour conduire des études de pharmaco-épidémiologie centrées autour du patient, avec un nombre de tables et de variables restreint.

### Méthodes

- > Définition du modèle de données relationnel par une équipe pluridisciplinaire
- > Rédaction du cahier des charges (ETL « Extract Transform and Load »)
- Sélection des variables pertinentes (exposition médicamenteuse, pathologies, indicateurs de soins...),
- Description des tables,
- Cartographie des variables sources vers le modèle final,
- Création du thésaurus associé.
- Programmation et exécution sur données « test » (SAS®)
- > Validation des programmes et des tables créées

### Résultats

Modèle de données final centré autour du patient (Figure 3)

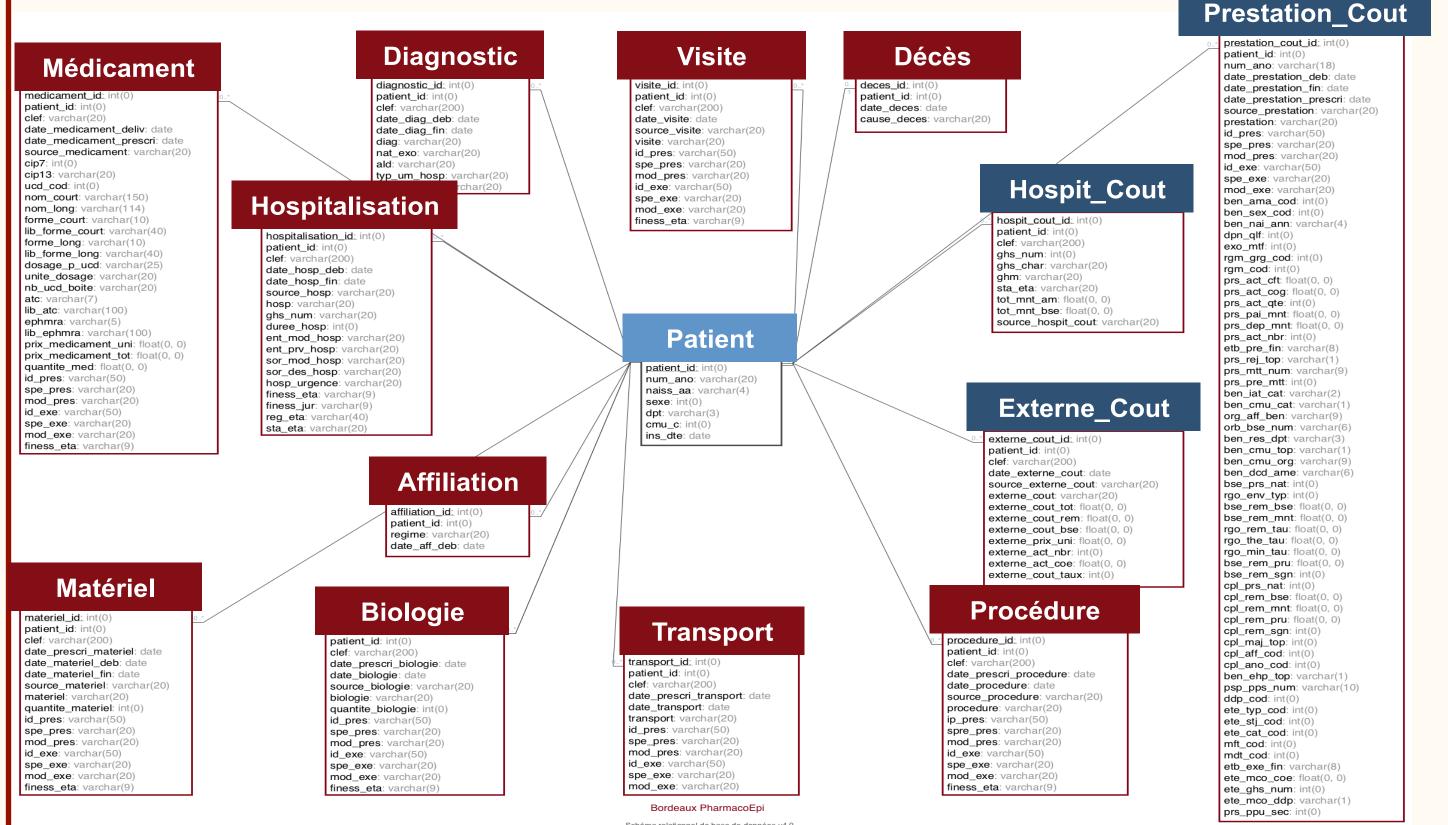



Figure 3. Architecture du SNDS centrée sur le patient

- > Structure des données, exemple de la table « Diagnostic » (Tableau 2)
- Données, provenant de 13 tables/année dans 5 des 6 univers (hors CépiDC), synthétisées en une seule table,
- Clé patient unique, code CIM-10 (diagnostic, ALD) réduit à 1 seule variable

| Nom Variable  | Libellé Variable                                                                           | Type Variable | Format | Précision                  |
|---------------|--------------------------------------------------------------------------------------------|---------------|--------|----------------------------|
| ID            | Identifiant du diagnostic (clé primaire)                                                   | number        | 11.    |                            |
| PATIENT_ID    | Identifiant du patient (clé étrangère)                                                     | number        | 11.    |                            |
| CLEF          | Clef (pour relier avec table HOSPITALISATION, HOSPIT_COUT et autres données hospitalières) | char          | \$200. |                            |
| DATE_DIAG_DEB | Date de début (séjour hospitalier / mise en<br>ALD ou invalidité ou AT ou MP)              | date          | 8.     |                            |
| DATE_DIAG_FIN | Date de fin (séjour hospitalier / mise en ALD ou invalidité ou AT ou MP)                   | date          | 8.     |                            |
| DIAG          | Code CIM10 Diagnostic hospitalier / ALD / invalidité / AT / MP                             | char          | \$20.  | Vocabulaire CIM10          |
| NAT_EXO       | Nature d'exonération                                                                       | char          | \$20.  | Vocabulaire NAT_EXO        |
| ALD           | Code ALD                                                                                   | char          | \$20.  | Vocabulaire TYP_ALD        |
| TYP_UM_HOSP   | Type d'autorisation d'unité médicale                                                       | char          | \$20.  | Vocabulaire TYP_UM         |
| SOURCE_DIAG   | Source du diagnostic                                                                       | char          | \$20.  | Vocabulaire<br>SOURCE_DIAG |

Tableau 2. Exemple de la table « diagnostic »

#### > Pour chaque table

- Indentification de la source de provenance de chaque donnée,
- Calcul de variables dérivées (passage aux urgences, soins intensifs, CMU-c...),
- Possibilité de relier des données d'un même univers présentes dans différentes tables,
- Ajout dans la table des coûts hospitaliers « Hospit\_cout » du montant environné du séjour provenant des Etudes Nationales de Coûts (ENC) annuelles de l'ATIH.
- > Exemple de l'étude CAMERRA : cohorte 2012 N = 913 358 patients, extraction de 10 années de soins (Tableau 3) :

|                            | Modèle initial | Modèle simplifié | Modèle simplifié<br>sans la table<br>"Prestation_cout" |
|----------------------------|----------------|------------------|--------------------------------------------------------|
| Nombre de tables           | 973            | 14               | 13                                                     |
| Volume des<br>données SAS® | 473 Go         | 389 Go (82%)     | 52 Go (11%)                                            |

Tableau 3. Etude CAMERRA, application du modèle simplifié

- Table « Prestation\_cout » encore volumineuse
- Gain de tables et de volume de données SAS®

### Concusion

- Cette standardisation de l'utilisation des données du SNDS a permis
  - D'optimiser le travail des statisticiens
  - Standardisation des tables,
  - Diminution de la variabilité inter-programmeurs,
  - Gain notable en terme de temps,
  - Meilleure reproductibilité des résultats et qualité scientifique.
  - D'optimiser l'exploitation des données
  - Utilisation simplifiée d'autres outils (macro SAS® HdPS, packages R…),
  - Simplification de la présentation et explication de la structure des données,
  - Programmes de recherche internationaux multi-pays, multi-bases de données : interconnexion optimisée avec les plateformes existantes (exemples : Aetion, Pharmo, OMOP-OHDSI...).









